论文标题

Uryson宽度,渐近维度和RICCI曲率

Uryson Width, Asymptotic Dimension and Ricci Curvature

论文作者

Wolfson, Jon

论文摘要

如果存在从m到k维的多面体空间p的连续映射f,则riemannian n-manifold M具有k维的uryson宽度,该宽度的连续映射f,使所有点的回调f^{ - 1}(p)的所有点P中的所有点P)在P中具有c的直径为c。我们证明,n维riemannian歧管M具有至少n-k特征值的ricci曲率曲率,下面由正常数(n-1)b界定下,具有k维的Uryson宽度,该宽度由常数c> 0界定。常数C仅取决于b。 特别是,因此,其riemannian n-manifold m具有标态曲率s的下面由正常常数n(n-1)s构成的riemannian n-manifold m具有(n-1)二维的uryson宽度,该宽度仅取决于c> 0。该结果证实了Gromov M. Gromov的猜想。

A Riemannian n-manifold M has k-dimensional Uryson width bounded by a constant c >0 if there exists a continuous map f from M to an k-dimensional polyhedral space P, such that the pullbacks f^{-1}(p) of all points p in P have diameters bounded by c. We prove that an n-dimensional Riemannian manifold M with at least n-k eigenvalues of the Ricci curvature bounded below by a positive constant (n-1)b has k-dimensional Uryson width bounded by a constant c >0. The constant c depends only on b. In particular, it follows that a Riemannian n-manifold M with scalar curvature S bounded below by a positive constant n (n-1) s has (n-1)-dimensional Uryson width bounded by a constant c >0 depending only on s. This result confirms a conjecture of M. Gromov.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源