论文标题
基于零确定联盟的大规模系统的利己主义激励措施
Egoistic Incentives Based on Zero-Determinant Alliances for Large-Scale Systems
论文作者
论文摘要
社会困境存在于各个领域,并引起了所谓的自由骑行问题,从而导致集体险恶。跟踪个人行为的困难使大规模系统中的利己主义激励措施成为一个具有挑战性的任务。但是,最新的机制是基于个人的或依赖于州的,导致大规模网络的效率低。在本文中,我们从连接的(网络)的角度提出了一种利己主义的激励机制,而不是通过利用人们的社会本质来提出一种孤立的(个人)观点。我们利用零确定的(ZD)策略来奖励合作和制裁叛逃。在证明合作是ZD参与者的主要策略之后,我们优化了他们的部署,以促进整个系统的合作。为了进一步加快合作的速度,我们为顺序多游戏重复游戏提供了ZD联盟策略,以使ZD玩家具有更高的可控杠杆作用,这无疑会丰富ZD策略的理论系统并扩大其应用领域。我们的方法是无状态和稳定的,这有助于其可扩展性。基于现实世界跟踪数据以及合成数据的大量模拟证明了我们在不同的网络方案下提出的利己主义激励方法的有效性。
Social dilemmas exist in various fields and give rise to the so-called free-riding problem, leading to collective fiascos. The difficulty of tracking individual behaviors makes egoistic incentives in large-scale systems a challenging task. However, the state-of-the-art mechanisms are either individual-based or state-dependent, resulting in low efficiency in large-scale networks. In this paper, we propose an egoistic incentive mechanism from a connected (network) perspective rather than an isolated (individual) perspective by taking advantage of the social nature of people. We make use of a zero-determinant (ZD) strategy for rewarding cooperation and sanctioning defection. After proving cooperation is the dominant strategy for ZD players, we optimize their deployment to facilitate cooperation over the whole system. To further speed up cooperation, we derive a ZD alliance strategy for sequential multiple-player repeated games to empower ZD players with higher controllable leverage, which undoubtedly enriches the theoretical system of ZD strategies and broadens their application domain. Our approach is stateless and stable, which contributes to its scalability. Extensive simulations based on a real world trace data as well as synthetic data demonstrate the effectiveness of our proposed egoistic incentive approach under different networking scenarios.