论文标题

统一的能源最优标准预测人类导航路径和速度

A unified energy optimality criterion predicts human navigation paths and speeds

论文作者

Brown, Geoffrey L., Seethapathi, Nidhi, Srinivasan, Manoj

论文摘要

导航我们的物理环境需要改变方向和转动。尽管它的生态重要性,但我们没有对非紧密人类运动的统一理论描述。在这里,我们提出了一个统一的最佳标准,该标准可以预测不同的非紧密步行现象,而直线行走是一种特殊情况。我们首先表征了转弯的代谢成本,从而得出了成本景观,这是半径和费率的函数。然后,我们将这种成本景观推广到任意复杂的轨迹,从而使速度方向偏离人体方向(自动步行)。我们使用这种广义的最优性标准在数学上预测各种复杂性的多种情况下的运动模式:在规定的路径上行走,旋转到位,导航倾斜的走廊,自由地自由地导航,并在端点限制下自由导航,穿过门,穿过门,并围绕障碍物导航。在这些任务中,人类以我们的最佳标准预测的速度和路径移动,速度放缓,从不使用急转弯。我们表明,两个点之间的最短路径是违反直觉的,通常不是最佳能量,实际上,在这种情况下,人类不会使用最短的路径。因此,我们获得了一个统一的理论说明,该叙述可以预测人类的步行路径和速度。我们的模型专注于在健康的成年人中行走;未来的工作可能会将这种模型推广到其他人群,其他动物和其他运动任务。

Navigating our physical environment requires changing directions and turning. Despite its ecological importance, we do not have a unified theoretical account of non-straight-line human movement. Here, we present a unified optimality criterion that predicts disparate non-straight-line walking phenomena, with straight-line walking as a special case. We first characterized the metabolic cost of turning, deriving the cost landscape as a function of turning radius and rate. We then generalized this cost landscape to arbitrarily complex trajectories, allowing the velocity direction to deviate from body orientation (holonomic walking). We used this generalized optimality criterion to mathematically predict movement patterns in multiple contexts of varying complexity: walking on prescribed paths, turning in place, navigating an angled corridor, navigating freely with end-point constraints, walking through doors, and navigating around obstacles. In these tasks, humans moved at speeds and paths predicted by our optimality criterion, slowing down to turn and never using sharp turns. We show that the shortest path between two points is, counterintuitively, often not energy optimal, and indeed, humans do not use the shortest path in such cases. Thus, we have obtained a unified theoretical account that predicts human walking paths and speeds in diverse contexts. Our model focuses on walking in healthy adults; future work could generalize this model to other human populations, other animals, and other locomotor tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源