论文标题
关于完美链代数的准同态类型
On the quasi-isomorphism type of a perfect chain algebra
论文作者
论文摘要
令$ r $为A(p.i.d),让$ t(v),\ partial)$为免费$ r $ -dga。 $(t(v),\ partial)$的准同态类型是所有免费dgas的$ \ {(t(v),\ partial)\} $的$ \ {(t(v),\ partial)\} $,是quasi-iSomorphic to $(t(v),\ partial)$的所有免费dgas。在本文中,我们调查以表征和计算集合$ \ {(t(v),\ partial)\} $,用于新的免费DGA,称为Perfect(一种特殊的Perfect DGA是Adams-Hilton的Adams-Hilton模型),简单地连接了CW-Complex,以便$ h _ {*}(x,x,R)$是免费的。我们表明,如果$(t(v),\ partial)$和$(t(w),δ)$是两个完美的dgas,则$(t(w),δ)\ in \ {(t(v),\ partial)\} $,仅当它们的白头精确序列是同位序列。此外,我们表明,每个dga $(t(v),\ partial)$都可以分开以给出一对$ \ big(((t(v),\ widetilde {\ partial})),(π_{n})_ {n \ geq 2} \ geq 2} \ big)与完美的dga $(t(v)$(t(t)扩展$(π_{n})_ {n \ geq 2} $,我们确定如果$(t(w),\widetildeδ)\ in \ in \ {(t(v),\ wideTilde {\ partial}) $(π'_{n})_ {n \ geq 2} $是同构(在某种意义上),然后$(t(w),δ)\ in \ in \ {(t(v),\ partial)\} $。
Let $R$ be a (P.I.D) and let $T(V),\partial)$ be a free $R$-dga. The quasi-isomorphism type of $(T(V),\partial)$ is the set, denoted $\{(T(V),\partial)\}$, of all free dgas which are quasi-isomorphic to $(T(V),\partial)$. In this paper we investigate to characterize and to compute the set $\{(T(V),\partial)\}$ for a new class of free dgas called perfect (a special kind of a perfect dga is the Adams-Hilton model of simply connected CW-complex such that $H_{*}(X,R)$ is free). We show that if $(T(V),\partial)$ and $(T(W),δ)$ are two perfect dgas, then $(T(W),δ)\in \{(T(V),\partial)\}$ if and only if their Whitehead exact sequences are isomorphic. Moreover we show that every dga $(T(V),\partial)$ can be split to give a pair $\big((T(V),\widetilde{\partial}),(π_{n})_{n\geq 2}\big)$ consisting with a perfect dga $(T(V),\widetilde{\partial})$ and a family of extensions $(π_{n})_{n\geq 2}$ and we establish that if $(T(W),\widetildeδ)\in \{(T(V),\widetilde{\partial})\}$ and if the extensions $(π_{n})_{n\geq 2}$ and $(π'_{n})_{n\geq 2}$ are isomorphic (in a certain sense), then $(T(W),δ)\in \{(T(V),\partial)\}$.