论文标题
gtasep具有带有开放边界的晶格上的吸引人互动
gTASEP with attraction interaction on lattices with open boundaries
论文作者
论文摘要
我们研究了单车道道路开放片段上颗粒簇聚集和碎片的模型。粒子和簇遵守完全不对称的简单排除过程(TASEP)的随机离散时间离散空间动力学,并具有向后有序的顺序更新(动力学),并具有两个跳跃概率,P和PM。第二个修改的概率PM模拟了属于同一群集的粒子之间的特殊运动学相互作用。该修改称为广义Tasep(GTASEP),因为它包含具有并行更新的特殊情况,并带有tasep,并带有向后有序的顺序更新,用于第二跳概率PM的特定值。我们在这里重点是说明其他吸引人相互作用对非平衡稳态中系统属性的影响。我们估计系统中各种物理量(大量密度,密度分布和电流)以及它们如何随PM的增加而变化(P <PM <1)。在随机步行理论中,我们考虑了MC模拟产生的不同边界条件和当前时空图的差距的演变,这说明了随机步行理论在GTASEP研究中的适用性。
We study a model of aggregation and fragmentation of clusters of particles on an open segment of a single-lane road. The particles and clusters obey the stochastic discrete-time discrete-space kinetics of the Totally Asymmetric Simple Exclusion Process (TASEP) with backward ordered sequential update (dynamics), endowed with two hopping probabilities, p and pm. The second modified probability, pm, models a special kinematic interaction between the particles belonging to the same cluster. This modification is called generalized TASEP (gTASEP) since it contains as special cases TASEP with parallel update and TASEP with backward ordered sequential update for specific values of the second hopping probability pm. We focus here on exemplifying the effect of the additional attraction interaction on the system properties in the non-equilibrium steady state. We estimate various physical quantities (bulk density, density distribution, and the current) in the system and how they change with the increase of pm (p < pm<1). Within a random walk theory we consider the evolution of the gaps under different boundary conditions and present space-time plots generated by MC simulations, illustrating the applicability of the random walk theory for the study of gTASEP.