论文标题

建模使用Pulsar定时阵列的太阳系系统的不确定性进行稳健的重力波搜索

Modeling the uncertainties of solar-system ephemerides for robust gravitational-wave searches with pulsar timing arrays

论文作者

Vallisneri, M., Taylor, S. R., Simon, J., Folkner, W. M., Park, R. S., Cutler, C., Ellis, J. A., Lazio, T. J. W., Vigeland, S. J., Aggarwal, K., Arzoumanian, Z., Baker, P. T., Brazier, A., Brook, P. R., Burke-Spolaor, S., Chatterjee, S., Cordes, J. M., Cornish, N. J., Crawford, F., Cromartie, H. T., Crowter, K., DeCesar, M., Demorest, P. B., Dolch, T., Ferdman, R. D., Ferrara, E. C., Fonseca, E., Garver-Daniels, N., Gentile, P., Good, D., Hazboun, J. S., Holgado, A. M., Huerta, E. A., Islo, K., Jennings, R., Jones, G., Jones, M. L., Kaplan, D. L., Kelley, L. Z., Key, J. S., Lam, M. T., Levin, L., Lorimer, D. R., Luo, J., Lynch, R. S., Madison, D. R., McLaughlin, M. A., McWilliams, S. T., Mingarelli, C. M. F., Ng, C., Nice, D. J., Pennucci, T. T., Pol, N. S., Ransom, S. M., Ray, P. S., Siemens, X., Spiewak, R., Stairs, I. H., Stinebring, D. R., Stovall, K., Swiggum, J. K., van Haasteren, R., Witt, C. A., Zhu, W. W.

论文摘要

一旦我们将脉冲的到达时间引入太阳系的惯性休息框,脉冲星排放的规律性就变得显而易见。因此,在确定地球在太阳系重中心方面的位置中的错误可能会显示为脉冲脉中的残留时间序列中的时间相关偏置,从而影响了对使用脉冲星时间正时阵列执行的低频引力波的搜索。实际上,在用不同的太阳系胚膜分析时,最近的阵列数据集产生了不同的重力波背景上限和检测统计。至关重要的是,胚层通常不提供可用的误差表示。在本文中,我们描述了太阳系的物理模型的动机,建筑和应用不确定性,该模型的重点是与脉冲星时阵列的重力波搜索最相关的自由度(木星的轨道元素)。该模型(贝耶斯佩姆)用于在Nanograv的11年随机背景搜索中得出Ephemeris-bobust的结果,并为Nanograv和其他联盟提供了未来搜索的基础。这里报道的分析和模拟表明,埃弗米斯建模降低了11年数据集的重力波灵敏度。而且,这种退化将随着滨海的改善以及较长的PULSAR计时数据集而消失,这些数据集将在不久的将来可用。

The regularity of pulsar emissions becomes apparent once we reference the pulses' times of arrivals to the inertial rest frame of the solar system. It follows that errors in the determination of Earth's position with respect to the solar-system barycenter can appear as a time-correlated bias in pulsar-timing residual time series, affecting the searches for low-frequency gravitational waves performed with pulsar timing arrays. Indeed, recent array datasets yield different gravitational-wave background upper limits and detection statistics when analyzed with different solar-system ephemerides. Crucially, the ephemerides do not generally provide usable error representations. In this article we describe the motivation, construction, and application of a physical model of solar-system ephemeris uncertainties, which focuses on the degrees of freedom (Jupiter's orbital elements) most relevant to gravitational-wave searches with pulsar timing arrays. This model, BayesEphem, was used to derive ephemeris-robust results in NANOGrav's 11-yr stochastic-background search, and it provides a foundation for future searches by NANOGrav and other consortia. The analysis and simulations reported here suggest that ephemeris modeling reduces the gravitational-wave sensitivity of the 11-yr dataset; and that this degeneracy will vanish with improved ephemerides and with the longer pulsar timing datasets that will become available in the near future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源