论文标题
量子环中的纵向磁化动力学:基于动量空间与真实空间之间的对应关系的PFAFFIAN方法
Longitudinal magnetization dynamics in the quantum Ising ring: A Pfaffian method based on correspondence between momentum space and real space
论文作者
论文摘要
作为量子相变的最多研究的范式,周期性的量子iSing链可以通过Jordan-Wigner变换完全解决,然后是傅立叶变换,在无旋转费米子的动量空间中对对角线进行了对角线。尽管上述过程是众所周知的,但关于量子伊斯林环的真实空间和动量空间表示之间的对应关系,尤其是与费米昂奇偶群有关的量子,还有一些微妙的点需要阐明。在这项工作中,我们建立了实际空间中两个完全排列的铁磁状态与经典伊辛环的两个退化动量空间基态之间的关系,前者是XYZ模型更为普遍的XYZ模型的特殊情况。基于此观察结果,我们提供了一个PFAFFIAN公式,用于计算最初在两个铁磁状态之一和翻译不变的驱动器中制备的系统,以计算出奇偶校验破坏纵向磁化的实时动力学。形式主义被证明适用于在线程序的帮助下用于PFAFFIAN的数值计算,从而提供了一种有效的方法来研究相关系统中离散时间晶体的出现。
As perhaps the most studied paradigm for a quantum phase transition, the periodic quantum Ising chain is exactly solvable via the Jordan-Wigner transformation followed by a Fourier transform that diagonalizes the model in the momentum space of spinless fermions. Although the above procedures are well-known, there remain some subtle points to be clarified regarding the correspondence between the real-space and momentum-space representations of the quantum Ising ring, especially those related to fermion parities. In this work, we establish the relationship between the two fully aligned ferromagnetic states in real space and the two degenerate momentum-space ground states of the classical Ising ring, with the former being a special case of the factorized ground states of the more general XYZ model on the frustration-free hypersurface. Based on this observation, we then provide a Pfaffian formula for calculating real-time dynamics of the parity-breaking longitudinal magnetization with the system initially prepared in one of the two ferromagnetic states and under translationally invariant drivings. The formalism is shown to be applicable to systems with the help of online programs for the numerical computation of the Pfaffian, thus providing an efficient method to numerically study, for example, the emergence of discrete time crystals in related systems.