论文标题
使用高阶拓扑绝缘子中的拓扑角状态的狄拉克费尔米管模式的非阿布莱式编织
Non-Abelian braiding of Dirac fermionic modes using topological corner states in higher-order topological insulator
论文作者
论文摘要
我们从数值上证明,位于高阶拓扑绝缘子角落中的拓扑角状态具有非亚伯式编织特性。此类拓扑角状态是Majorana零模型以外的狄拉克费米原模式。我们声称,受非平凡拓扑保护的迪拉克费米原模式也支持非亚伯辫子。基于涡旋诱导的dirac型费米子模式进行了对这种非亚洲编织的分析描述。狄拉克费米子模式的编织操作员也被分析衍生,并与Majorana零模型进行了比较。在实验上,提议通过拓扑电路证明这种非阿布尔编织操作。
We numerically demonstrate that the topological corner states residing in the corners of higher-order topological insulator possess non-Abelian braiding properties. Such topological corner states are Dirac fermionic modes other than Majorana zero-modes. We claim that Dirac fermionic modes protected by nontrivial topology also support non-Abelian braiding. An analytical description on such non-Abelian braiding is conducted based on the vortex-induced Dirac-type fermionic modes. The braiding operator for Dirac fermionic modes is also analytically derivated and compared with the Majorana zero-modes. Experimentally, such non-Abelian braiding operation on Dirac fermionic modes is proposed to be testified through topological electric circuit.