论文标题
对称高斯 - 塞德尔半抗ALM的最佳分散控制系统对不确定系统
Optimal Decentralized Control for Uncertain Systems by Symmetric Gauss-Seidel Semi-Proximal ALM
论文作者
论文摘要
在这项工作中研究了H2保证的成本分散控制问题。更具体地说,基于我们进行的适当的H2重新配置,在存在参数不确定性的情况下,最佳控制问题的适当特征是凸限制并在参数空间中求解。结果表明,不确定系统的一组稳定分散的控制器的收益是通过适当的凸限制设置的凸的参数化,然后构建了一个近似的圆锥优化问题。这有助于使用对称的高斯 - 塞德尔(SGS)半增强拉格朗日方法(ALM),该方法具有很高的计算效率。对方法在解决最佳分散控制问题方面的应用进行了全面分析;随后,通过提出的方法可以适当保证保存的分散结构,稳健的稳定性和稳健的性能。此外,提出了一个说明性示例,以证明提出的优化方法的有效性。
The H2 guaranteed cost decentralized control problem is investigated in this work. More specifically, on the basis of an appropriate H2 re-formulation that we put in place, the optimal control problem in the presence of parameter uncertainties is then suitably characterized by convex restriction and solved in parameter space. It is shown that a set of stabilizing decentralized controller gains for the uncertain system is parameterized in a convex set through appropriate convex restriction, and then an approximated conic optimization problem is constructed. This facilitates the use of the symmetric Gauss-Seidel (sGS) semi-proximal augmented Lagrangian method (ALM), which attains high computational effectiveness. A comprehensive analysis is given on the application of the approach in solving the optimal decentralized control problem; and subsequently, the preserved decentralized structure, robust stability, and robust performance are all suitably guaranteed with the proposed methodology. Furthermore, an illustrative example is presented to demonstrate the effectiveness of the proposed optimization approach.